A Neural Network Approch to Efficient Valuation of Large Portfolios of Variable Annuities
نویسندگان
چکیده
Managing and hedging the risks associated with Variable Annuity (VA) products requires intraday valuation of key risk metrics for these products. The complex structure of VA products and computational complexity of their accurate evaluation has compelled insurance companies to adopt Monte Carlo (MC) simulations to value their large portfolios of VA products. Because the MC simulations are computationally demanding, especially for intraday valuations, insurance companies need more efficient valuation techniques. Recently, a framework based on traditional spatial interpolation techniques has been proposed that can significantly decrease the computational complexity of MC simulation (Gan and Lin, 2015). However, traditional interpolation techniques require the definition of a distance function that can significantly impact their accuracy. Moreover, none of the traditional spatial interpolation techniques provide all of the key properties of accuracy, efficiency, and granularity (Hejazi et al., 2015). In this paper, we present a neural network approach for the spatial interpolation framework that affords an efficient way to find an effective distance function. The proposed approach is accurate, efficient, and provides an accurate granular view of the input portfolio. Our numerical experiments illustrate the superiority of the performance of the proposed neural network approach compared to the traditional spatial interpolation schemes.
منابع مشابه
A Neural Network Approach to Efficient Valuation of Large Portfolios of Variable Annuities
Managing and hedging the risks associated with Variable Annuity (VA) products require intraday valuation of key risk metrics for these products. The complex structure of VA products and computational complexity of their accurate evaluation have compelled insurance companies to adopt Monte Carlo (MC) simulations to value their large portfolios of VA products. Because the MC simulations are compu...
متن کاملA Neural Network Approach to Efficient Valuation of Large VA Portfolios
A Neural Network Approach to Efficient Valuation of Large VA Portfolios Seyed Amir Hejazi Doctor of Philosophy Graduate Department of Computer Science University of Toronto 2016 Variable annuity (VA) products expose insurance companies to considerable risk because of the guarantees they provide to buyers of these products. Managing and hedging the risks associated with VA products requires intr...
متن کاملA Spatial Interpolation Framework for Efficient Valuation of Large Portfolios of Variable Annuities
Variable Annuity (VA) products expose insurance companies to considerable risk because of the guarantees they provide to buyers of these products. Managing and hedging these risks requires insurers to find the value of key risk metrics for a large portfolio of VA products. In practice, many companies rely on nested Monte Carlo (MC) simulations to find key risk metrics. MC simulations are comput...
متن کاملEfficient valuation of SCR via a neural network approach
As part of the new regulatory framework of Solvency II, introduced by the European Union, insurance companies are required to monitor their solvency by computing a key risk metric called the Solvency Capital Requirement (SCR). The official description of the SCR is not rigorous and has lead researchers to develop their own mathematical frameworks for calculation of the SCR. These frameworks are...
متن کاملSEISMIC DESIGN OF DOUBLE LAYER GRIDS BY NEURAL NETWORKS
The main contribution of the present paper is to train efficient neural networks for seismic design of double layer grids subject to multiple-earthquake loading. As the seismic analysis and design of such large scale structures require high computational efforts, employing neural network techniques substantially decreases the computational burden. Square-on-square double layer grids with the va...
متن کامل